
Experimental Programming in Fortran

Arjen Markus

Deltares

July 3, 2020

Arjen Markus Experimental Programming in Fortran

Introduction

Fortran programming often very pragmatic:
A concrete problem needs to be solved.

A typical program:

Read input

Do the calculation

Write results

But let us get beyond the pragmatic!

Arjen Markus Experimental Programming in Fortran

More than meets the eye

Other languages offer:

Lambda expressions, that is, anonymous functions

Functional programming

Non-class based object-oriented programming

...

And what about mathematical subjects?

Can we have some of these? That is the subject of this talk.

Arjen Markus Experimental Programming in Fortran

Mathematical notions

Consider the mathematical concept of vector spaces:

Two objects (in the mathematical sense) can be added to give
a new object.

You can scale an object by a scalar.

Vectors in n-dimensional Euclidean space (Rn) are easy – but how
about function spaces?

Yes, we can!

Arjen Markus Experimental Programming in Fortran

Mathematical notions (2)

program test_space

use vectors_function

implicit none

intrinsic :: sin, cos

type(vector_function) :: a, b, c, d

procedure(f_of_x), pointer :: f

f => sin; call setfunc(a, f) ! procedure pointer

f => cos; call setfunc(b, f) ! needed

c = a + b

d = 10.0 * c

write(*,*) ’a at x = 1.0: ’, a%eval(1.0)

write(*,*) ’b at x = 1.0: ’, b%eval(1.0)

write(*,*) ’c at x = 1.0: ’, c%eval(1.0)

write(*,*) ’d at x = 1.0: ’, d%eval(1.0)

...

end program test_space

Arjen Markus Experimental Programming in Fortran

Mathematical notions (3)

And the output is as expected:

$./test_space

a at x = 1.0: 0.841470957

b at x = 1.0: 0.540302277

c at x = 1.0: 1.38177323

d at x = 1.0: 13.8177319

Perhaps not a very practical example, but it illustrates that such
things are possible!

Arjen Markus Experimental Programming in Fortran

Mathematical notation

Consider this advection-diffusion-reaction equation:

∂C

∂t
+ u · ∇C = ∇(D∇C)− k(C) (1)

k(C) = k0 if C > 0, else 0 (2)

An alternative notation (using ∇ · u = 0, as the flow field is
conservative):

∂C

∂t
+ div(uC) = div(DgradC)− k(C) (3)

Arjen Markus Experimental Programming in Fortran

Mathematical notation (2)

Numerous numerical methods are available:

The concentration C is approximated via some discretisation –
a regular grid or a triangular mesh or ...

The gradient terms are approximated using finite differences
or finite-element techniques

Discrete time steps

But: we can hide all those gruesome details!

Arjen Markus Experimental Programming in Fortran

Mathematical notation (3)

Define suitable overloaded and user-defined operations to arrive at:

decay = merge(decay0, 0.0, conc > 0.0)

deriv = .div. (-flow * conc + disp * .grad. conc) - decay

conc = conc + deriv * deltt

Note that the code is independent of the actual discretisation and
the number of dimensions.
We can hide the precise numerical methods inside the overloaded
operations and functions. (And use coarrays underneath.)

Arjen Markus Experimental Programming in Fortran

Something completely different: lambda expressions

Languages like Java and C# allow the user to define anonymous
functions, also known as lambda expressions.

Here is an example in Java:

printPersons(

roster,

(Person p) ->

p.getGender() == Person.Sex.MALE

&& p.getAge() >= 18

&& p.getAge() <= 25

);

Here (Person p) -> ... defines an expression that acts as a
function inside printPersons.

This is not possible in Fortran – or is it?

Arjen Markus Experimental Programming in Fortran

Lambda expressions – in Fortran

Well, perhaps not as elegant, but we can get close – without
special syntax:

program print_table

use lambda_expressions

type(lambda_integer) :: x

type(lambda_expression) :: lambda1, lambda2

integer :: v

call lambda1%set(x, x+2)

call lambda2%set(x, x*2)

do v = 1,10

write(*,*) v, lambda1%eval(v), lambda2%eval(v)

enddo

end program

Arjen Markus Experimental Programming in Fortran

Lambda expressions – overloaded operations

The secret lies in overloading the arithmetic operations and
elementary functions:

function integer_add(x, y) result(add)

type(lambda_integer), intent(in), target :: x, y

type(lambda_integer), pointer :: add

allocate(add)

add%operation = 1 ! Indicates addition

add%first => x

add%second => y

end function integer_add

This way, you build up an expression tree

Arjen Markus Experimental Programming in Fortran

Lambda expressions – dirty work behind the screens

And some messing about with pointers:

subroutine set_expression(lambda, x, expr)

class(lambda_expression) :: lambda

type(lambda_integer), target :: x

type(lambda_integer), pointer :: expr

type(lambda_integer_pointer), dimension(size(lambda%operand)) :: &

arg

arg(1)%arg => x

arg(2)%arg => null() ! Only one variable in the expression

...

!

! Correct the pointers to arguments

!

call correct_pointer(arg, lambda%operand, expr)

allocate(lambda%expr, source=expr)

end subroutine set_expression

Arjen Markus Experimental Programming in Fortran

Lambda expressions useful?

The fact that other languages have lambda expressions (the idea
originated in LISP, if I am not mistaken) could be an argument to
include them in some future version of the standard.

Having a basic implementation, however, allows us to experiment
and see if it is worth the trouble.

But I really like the fact that for this experiment we do not need
new syntax!

Arjen Markus Experimental Programming in Fortran

Alternative object-oriented paradigms

The Fortran 2003 standard introduced object-oriented
programming, based on classes – the C++ style.

Typical concepts:

Objects based on classes, extensible via inheritance

OOP allows for data abstraction and information hiding (or
implementation hiding)

Objects can act as different types (polymorphism)

But there are other styles as well!

Arjen Markus Experimental Programming in Fortran

Alternative object-oriented paradigms: Self

The Self language for instance uses a ”prototype” approach:

Objects can be extended with new properties and methods, so
no fixed classes

Objects can be used as a template for other objects

As a consequence: a dynamic system

Arjen Markus Experimental Programming in Fortran

Alternative object-oriented paradigms: Fortran

A simple example of this approach in Fortran:

use prototypes

type(prototype) :: p1, p2

integer :: start, end

logical :: found

!

! Fill properties for variable p1

!

call prototype_set(p1, "Start", 1)

call prototype_set(p1, "End", 10)

!

! We need a copy, reset one property:

!

p2 = p1 ! This relies on automatic reallocation!

call property_set(p2, "Start", 2)

Copying an object results in a new object that can get new values
for existing properties or get new properties and methods.

Arjen Markus Experimental Programming in Fortran

Alternative object-oriented paradigms: implementation
aspects

The implementation of the prototypes module depends on
several Fortran 2003 features:

Automatic and sourced allocation

Unlimited polymorphic variables

Procedure pointers

One ”problem”: it uses subroutines to retrieve values, not functions

integer :: value

logical :: found

call prototype_get(p1, "Start", value, found)

Arjen Markus Experimental Programming in Fortran

Conclusion

Fortran is not perfect, there is still a lot to be wished for, but:

Do we realise all that is possible?

What other experiments can we do?

Which technique will proof useful in practice?

(Short articles on these experiments as well as the source code is available on

http://flibs.sf.net)

Arjen Markus Experimental Programming in Fortran

http://flibs.sf.net

